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ABSTRACT Over the past decade, design and implementation of low-power systems has received
significant attention. While it started with data centers and battery-operated mobile devices, it has recently
branched to core network devices such as routers. However, this emerging need for low-power system design
has not been studied for security systems, which are becoming increasingly important today. Toward this
direction, we aim to reduce the power consumption of network-level intrusion detection systems (NIDS),
which are used to improve the secure operation of modern computer networks. Unfortunately, traditional
approaches to low-power system design, such as frequency scaling, lead to a disproportionate increase in
packet processing and queuing times. In this paper, we show that this increase has a negative impact on the
detection latency and impedes a timely reaction. To address this issue, we present a low-latency and energy-
efficient NIDS (LEoNIDS): an architecture that resolves the energy-latency tradeoff by providing both low
power consumption and low detection latency at the same time. The key idea is to identify the packets that are
more likely to carry an attack and give them higher priority so as to achieve low attack detection latency. Our
results indicate that LEoNIDS consumes power comparable to a state-of-the-art low-power design, while, at
the same time, achieving up to an order of magnitude faster attack detection.

INDEX TERMS Intrusion detection systems, network security, energy-efficient systems, low-power design,
low latency, performance, multi-core packet processing.

I. INTRODUCTION
Low power consumption has emerged as one of the main
design goals in today’s computer systems. Recently, much
effort has been put into improving the energy efficiency in
a variety of areas like data centers [1], high performance
computing [2], mobile devices [3], and networks [4].
Towards this direction, we aim to build an energy-efficient
Network-level Intrusion Detection System (NIDS). NIDS are
commonly deployed to detect security violations, enhancing
the secure operation of modern computer networks. They
perform computationally heavy operations like pattern
matching, regular expression matching, and other types of
complex analysis to detect at real time malicious activities in
the monitored network. Thus, NIDS usually utilize multi-core
systems [5] or cluster of servers [6], [7] to cope with increased
link speeds and complicated analysis. However, the energy

efficiency of security systems like NIDS has not received
significant attention and has not been studied before. In this
work, we study this emerging need for low-power system
design and improved energy efficiency focusing on NIDS,
which are among the most commonly deployed systems for
cyber security.
Although NIDS are usually provisioned to operate at link

rate, in order to be able to handle a fully utilized network,
most networks are typically much less utilized. This results
in increased power consumption at low traffic load. To reduce
the energy spent under low traffic we aim at building a power-
proportional NIDS using Dynamic Voltage and Frequency
Scaling (DVFS) and sleep states (C-states), which can be
found in modern processors. The system should consume
the less power needed to sustain the incoming traffic load.
We found that a NIDS consumes less power when it uses
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the smallest number of cores that can operate at the lowest
possible frequency to process the network traffic, by keeping
these cores nearly fully utilized. This energy-efficient NIDS
can process all packets with up to 23% lower power
consumption than the original system at low rates. However,
we observe a significant increase on the detection latency due
to higher processing times when reducing the frequency, and
mostly due to increased queuing delays imposed by the high
utilization.

A low detection latency is very important to ensure a timely
reaction to the attack. Upon the detection of a packet that
carries an attack, the NIDS can actively terminate the offend-
ing connection or install a new firewall rule. This reaction
should be immediate, before the attack packets reach the
victim’s machine and the attack succeeds. Therefore, our
results indicate a new tradeoff for NIDS: the energy-latency
tradeoff. Our key idea to resolve this tradeoff is to identify
the most important packets for attack detection and process
them with higher priority, resulting in low latency and fast
detection. The rest packets are processed with lower priority
to achieve an overall low power consumption.

We explore two alternative approaches to reduce the
latency of high-priority packets: time sharing and space
sharing. In time sharing we use a typical priority queue
scheduling in each core. In space sharing the high-priority
packets follow a different path, using dedicated cores with
much lower utilization to achieve low latency. To implement
space sharing we use features of modern network interface
cards (NIC) to move efficiently the processing of least-
significant packets to cores with higher utilization, a tech-
nique we call as flow migration. We experimentally compare
the two approaches and we find that space sharing has a better
power-latency ratio.

Based on these approaches we propose LEoNIDS: a NIDS
architecture that resolves the energy-latency tradeoff. The
implementation of LEoNIDS uses NIC features, a specialized
kernel module, a modified user-level library, and it is based on
the popular Snort NIDS [8]. LEoNIDS consumes less power,
proportionally to the traffic load, while its detection latency
remains low and almost constant at any traffic load.

The main contributions of this work are:
• We identify a new tradeoff for NIDS: the energy-latency
tradeoff. As we reduce power consumption, the detec-
tion latency is significantly increased, which impedes
a timely reaction to incoming attacks. We found that
the main cause of this increase is the queuing delays
imposed by the high core utilization.

• We resolve the energy-latency tradeoff by identifying
the packets that have a higher probability to contain an
attack and processing them with higher priority.

• We introduce space sharing: a new technique based
on flow migration that processes high-priority packets
in dedicated cores with low utilization, and moves the
low-priority packets to cores with higher utilization.

• We experimentally compare two alternative approaches
for low latency in a power-proportional NIDS. We show

that space sharing results in lower detection latency
when power consumption is reduced.

• We present the design, implementation, and evaluation
of LEoNIDS, a NIDS architecture that achieves both low
latency and reduced power consumption.

II. MOTIVATION
We first explain why a low response time is crucial for
a NIDS, and then we argue for the usefulness of an
energy-efficient NIDS.

A. WHY DETECTION LATENCY MATTERS
Although a NIDS operating in passive mode does not affect
the actual latency of themonitored packets, a fast attack detec-
tion is necessary. This is because a NIDS is able to react and
protect the potential victims upon a timely attack detection,
without the need of human advisory. One way to achieve
this is to actively terminate an offending TCP connection
by sending TCP reset packets with the correct sequence
numbers and spoofed IP addresses of victim and attacker
hosts, e.g., using Snort’s active response [9]. Since a reset
packet may reach the client or server after the other host has
already responded, the NIDS tries to close the connection by
sending multiple reset packets and guessing the next TCP
sequence and acknowledgment numbers. However, such an
active response is not guaranteed to successfully terminate
an offending connection: it is a race between the NIDS and
the endpoints of the network communication. Depending on
the detection latency and the network latency, NIDS may or
may not win this race. Thus, a NIDS should be able to detect
the incoming attacks very fast, especially in order to stop fast
TCP connections. For instance, in case of an 100 Mbit/sec
connection, assuming an average packet size of 500 bytes, an
attack packet should be detected in less than 40 microseconds
upon its arrival for an effective active response by the NIDS.
Another possible reaction of a NIDS is to automatically

add a firewall rule to block the next incoming attack packets
in order to prevent a full system compromise. To be effective,
a low detection latency is again crucial. Moreover, DNS and
URL blacklists may also be updated upon the detection of a
malicious domain or malicious URL to protect the other hosts
from accessing it. Since a malicious website may be accessed
within short time periods by many users, e.g., due to massive
spam messages, it is important to automatically update these
blacklists in a timely fashion.

B. WHY POWER CONSUMPTION MATTERS
NIDS are usually overprovisioned to handle a fully utilized
line and tolerate overloads without missed attacks [10]. Thus,
they use all the available resources: all cores [5], and the max-
imumCPU frequency. In high speed networks, the traffic load
may also be split among multiple machines [6], [7]. However,
the monitored networks are rarely fully utilized at their max-
imum capacity and a NIDS machine is not often overloaded.
This results in increased energy and increased cost for running
multiple NIDS to protect a large infrastructure.
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Power consumption is a significant concern in data center
environments with limited power capacity. Moreover, it is
important in devices with limited resources, such as small
routers or wireless access points. The power consumption
is even more important when NIDS run on devices with
limited battery life, such as sensor nodes or mobile devices.
For instance, mobile devices may run a host-based NIDS to
protect their users. We believe that our work can be applied
in NIDS that run in such devices as well.

Reducing the power consumption of network security
solutions like NIDS is important to reduce the operational
costs of these security products, making them more attrac-
tive to use than other alternative approaches. Reducing the
power cost of a NIDS may not be very important for a
data center compared to its total power consumption, but it
is quite important for NIDS vendors to provide more cost-
effective solutions. Network security products with reduced
power consumption will give one more benefit in the market,
while network security services based on NIDS, which are
rapidly developed today using cloud infrastructures, will
offer lower prices when consuming less energy. Given the
recent advances in hardware and computer architecture, with
more powerful hardware components and increasing number
of CPU cores, building energy-efficient systems and
applications becomes an important performance indicator.

III. TOWARDS A POWER PROPORTIONAL NIDS
In this section we explore the design space to build a
power-proportional NIDS.

A. EXPERIMENTAL ENVIRONMENT
Our testbed consists of two machines interconnected with
a 10 GbE switch. Both machines are equipped with two
six-core Intel Xeon E5-2620 processors with 15 MB L2
cache, 8 GB RAM, and an Intel 82599EB 10 GbE network
interface. The clock frequency can be scaled from 1.2 GHz to
2.0 GHz using DVFS, which results in 9 available frequency
steps. They also support Intel Turbo Boost technology to
increase their frequency up to 2.5 GHz. To reduce power
consumption, each idle core can be put into one of the
3 available sleep states: C1, C3 or C6, where the CPU reduces
or stops the performance of internal units. We measure the
power consumption in the NIDSmachine using theWatts up?
PRO ES device.

The first machine is used for traffic generation. The
generated traffic reaches the second machine, which runs
Snort IDS [8] v2.8.3.2 with official rule set [11] containing
8308 rules. We use PF_RING [12] v5.3.0 and ixgbe driver
v3.7.17 to split the incoming traffic to active cores using
the Receive Side Scaling (RSS) [13] feature of Intel 82599
NIC [14]. We set the size of the ring buffer that stores packets
at each core to 4096 slots. To change the frequency we use the
cpufrequtils package. Both machines run 64-bit Linux (kernel
version 3.5.0).

We generate real traffic by replaying an one-hour
long anonymized trace captured at the access link of an

operational network. The trace contains 58,714,906 packets
and 1,493,032 flows, totaling more than 40GB, 95.4% of
which is TCP traffic. For this trace Snort triggers 1851 alerts
from 76 different rules. Most of the matching rules are
related to common threats and protocol violations. In order
to strengthen our evaluation, we augmented the trace with
120 anonymized traces of real attacks captured in the
wild [15], adding 233 more alerts from 14 different rules.
In this work we present our findings using this trace as
workload, which we believe is representative for a typical
network. We found quite similar results when using few
different workloads based on anonymized packet traces from
other sources.

B. POWER CONSUMPTION
The system’s idle power consumption is 85.1 W, and when
Snort fully utilizes all cores it consumes 145.7 W. As NIDS
perform heavy computational operations, the CPU consumes
the larger portion of energy in the system. Table 1 shows the
contribution of the CPU in the total power consumption when
running Snort. We measure the CPU power consumption by
accessing the RAPL (Running Average Power Limit) regis-
ters provided by each Intel Xeon E5-2620 CPU. In all NIDS
utilizations, 58-62% of the total power is consumed by CPUs.

TABLE 1. The CPU consumes the larger portion of energy in a
NIDS. More than 50% of the power is consumed by the CPU.

Modern processors offer two ways to reduce power
consumption: frequency scaling (DVFS), and sleep states
(C-states). Intel processors have a single voltage and
frequency regulator, so the frequency changes uniformly
at all cores of a processor and the transition between the
frequencies requires small time. However, each core can
operate in a different C-state to save energy. The power
consumption of each core consists of (i) power consumed
when the core processes packets, (ii) power consumed to enter
a C-state, and (iii) power consumed during the idle state.
We see that idle cores consume less power in C6 state, so we
put inactive cores in this state.
Based on the packet arrival rate, we aim to find the most

energy-efficient strategy for a NIDS by properly adapting the
frequency and the number of active cores (not in C-states).
The two main questions are: (i) is it better to operate at lower
frequency or utilize sleep states? (ii) is it better to use more
cores on lower frequency or fewer cores at higher frequency?
To find the optimal strategy we measure Snort’s power

consumption as a function of frequency and number of active
cores, when sending traffic at a constant rate of 0.6 Gbit/sec.
Figure 1(a) shows that the lowest power consumption is
achieved when using 4 cores at 1.2 GHz, which is the
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FIGURE 1. Fewer cores and lower frequency reduce the power consumption but increase the detection latency. Power consumption, detection latency, and core
utilization as a function of frequency and number of active cores when running Snort and sending 0.6 Gbit/sec. We see that power consumption decreases as the
utilization of active cores approaches 100%. However, this results in increased detection latency. (a) Power consumption. (b) Detection latency. (c) Utilization per
active core.

minimum setup able to handle the 0.6 Gbit/sec traffic with
no packet loss. In this setup we see up to 21% reduced
power consumption compared to 12 cores at the maximum
frequency.

We observe that the less power is consumed when the
system operates at the lowest possible frequency with no idle
time, instead of running at higher frequencies and entering
C-states during idle periods. Moreover, we see that using
more cores at lower frequency is more energy efficient than
using fewer cores at higher frequencies. For instance, Table 2
shows three alternative setups that can be used to process
1.5 Gbit/sec, as they offer approximately the same computing
power. We see that 10 cores at 1.2 GHz consume the less
power. Figure 1(c) shows the average utilization of active
cores. We see that power consumption decreases as the
core utilization increases and approaches 100%. This is
because being idle is not sufficiently efficient, i.e., the power
consumed to enter and leave C-states and during these idle
periods is quite significant.

TABLE 2. Using more cores at lower frequency consumes less
power but results in higher detection latency (when processing
1.5 Gbit/sec).

C. ADAPT TO THE TRAFFIC LOAD
Our results indicate that a power-proportional NIDS should
utilize the smallest number of cores that are able to process
all the incoming traffic when they operate at the lowest pos-
sible frequency. Therefore, the system should dynamically
adapt to the load by changing the frequency and activat-
ing/deactivating cores. We observe that it is preferable to
first activate cores of the same CPU, which explains the
larger distance between 6 and 8 cores in Figure 1(a). The
NIDS should be also able to handle short-term overloads by

spending more energy during these periods to avoid dropping
packets, which results in undetected attacks [16].
ANIDS is based on the underlying packet capturing system

to receive packets for processing. To tolerate processing
spikes or short-term overloads, the packet capturing system
is able to store a limited number of packets in memory
queues. Modern NICs [14] offer multiple receive queues and
distribute the packets among them to allow for efficient multi-
core processing [12].When queues are getting full, the system
has a strong indication of higher load than it can handle with
the current setup, so it needs to employ more cores or increase
the frequency. A straight-forward power-proportional NIDS
uses the following strategy:

1. It starts with a single active core at the minimum
frequency.

2. It continuously monitors the queues’ usage.

2.1. If queues are filled by more than a high threshold:

2.1.1. If there are inactive cores, it wakes up one
core.

2.1.2. Else, it increases the frequency of all cores.

2.2. If queues are filled by less than a low threshold:

2.2.2. If the lowest frequency is used, it deactivates
one core.

2.2.2. Else, it decreases the frequency.

We implemented this online adaptation algorithm within
the packet capturing subsystem and we ran Snort over this
system while varying the load. We set high threshold to 90%
and low threshold to 70%. Figure 2 (bottom part) shows the
power consumption of this straight-forward energy-efficient
NIDS as a function of the traffic rate, compared to the orig-
inal system. We see that the vanilla system consumes 24%
less power when processing 0.2 Gbit/sec, compared with the
power consumption at 3 Gbit/sec, which is the maximum
rate without packet loss. Contrary, the power-proportional
NIDS adapts much better to the load reducing the power
consumption by 39% when processing 0.2 Gbit/sec. This is
a 23% improvement on the power consumption compared to
the original system.
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FIGURE 2. Power consumption and detection latency of a
straight-forward power-proportional NIDS versus the original
NIDS as a function of traffic rate. The straight-forward
power-proportional NIDS consumes less power with higher
detection latency.

IV. THE ENERGY-LATENCY TRADEOFF IN NIDS
Although a power-proportional NIDS is able to handle the
same traffic as the original system with lower energy, we
would like to explore the impact of this approach on the
detection latency.

A. DETECTION LATENCY
We instrumented Snort to measure the attack detection
latency, by subtracting from the time that an alert is triggered
the timestamp of the packet that contains the attack. The
packet’s timestamp is set within the packet capturing module
before the packet is queued. Figure 1(b) shows the detection
latency as a function of frequency and number of active cores
for 0.6 Gbit/sec. We see a linear increase when frequency
is reduced until 1.6 GHz, and when up to 8 cores are used,
but we see a significant increase to the detection latency
when core utilization exceeds 70%. To better see the relation
between power consumption and detection latency we replot
these data in Figure 3. We see a clear tradeoff: to achieve

FIGURE 3. The energy-latency tradeoff. Detection latency as a
function of power consumption when sending 0.6 Gbit/sec
traffic. We see that detection latency increases as power
consumption is reduced.

power consumption lower than 100 W, the detection latency
has to be increased 2–7 times. Our experimental evaluation,
at the end of Section VII, shows that such an increase in the
detection latency can significantly impede the effectiveness
of an automated reaction of a NIDS to an incoming attack.
Table 2 leads us to the same outcome: although using

10 cores at 1.2 GHz consumes the less power, it comes at a
price of significantly increased latency. Figure 2 (upper part)
shows the detection latency of a power-proportional NIDS,
compared to the original system. We see that although it
consumes less power, it has a significantly higher detection
latency at all rates. This is because it always selects the
frequency and number of cores that lead to high utilization,
close to 100%, in order to save energy.

B. DECONSTRUCTING DETECTION LATENCY
We define detection latency as the time passed from the
arrival of the last packet that contains the attack until the alert
generation in the NIDS. Thus, detection latency is equal to the
latency imposed per each attack packet, from capturing time
until it finishes processing. The packet latency can be divided
in three parts: (i) interrupt handling time, i.e., the time spent
for packet handling in OS kernel, (ii) queuing delay, i.e., the
time that packet waits in a queue to be delivered for process-
ing, and (iii) processing time by the NIDS at user level.We see
that the interrupt handling time is negligible compared to
queuing delay and NIDS processing time. Thus, the increased
detection latency may occur due to higher processing times
when reducing the frequency or due to higher queuing delays
imposed by the increased utilization.
To explore why detection latency is increased, we mea-

sure how much each part contribute to the detection latency
as we vary the offered traffic rate for different frequen-
cies. We instrumented Snort to measure the queuing delay
per packet, by subtracting the packet’s timestamp from the
time that packet is received in Snort for processing, and the
packet’s processing time in Snort. Figure 4 shows the average
processing time and queuing delay per each attack packet
for traffic rates ranging from 0.5 Gbit/sec to 1.5 Gbit/sec,
when using 12 cores in 1.2 GHz, 1.8 GHz, and 2.3 GHz.

FIGURE 4. The main cause of increased detection latency is
higher queuing delay. We see that for low frequency and high
rates, queuing delay is much higher than processing time.
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In low frequency and high rates, when the system is more
utilized, queuing delay is the main factor of the increased
detection latency. For instance, when processing 1.5 Gbit/sec
at 1.2 GHz, queuing delay is 7 times higher than processing
time. This is because the higher utilization results in a large
number of packets waiting at each queue and thus in a higher
queuing delay. In contrast, processing time increases linearly
as we decrease frequency.

C. DELAY ANALYSIS
To better understand how queuing delay is affected by
reduced frequency and number of cores, we present a the-
oretical formulation of the problem using basic concepts
from queuing theory. We assume that packet arrivals follow
a Poisson distribution with an average rate of λ packets
per second, and that the queued packets are processed with
an exponential service rate of µ packets per second. The
maximum service rate is µmax when all the cmax cores are
used at the maximum frequency fmax . Packets arrive at each
core with rate λc=λ/c, where c is the number of active cores,
and they are served from each core with rate µc = µ/cmax .
Each core can be modeled as a M/M/1 queue with a finite
queue size of N packets. The core’s utilization is ρc = λc/µc.
Reducing the number of cores c that process incoming packets
results in an increased arrival rate λc per core. Reducing the
frequency f results in reduced service rate per core:

µc(f ) =
µmax

cmax

f
fmax

(1)

The total delay T of a packet, which is queuing delay plus
processing time, when using c cores and frequency f is:

T =
1

µc(f )− λc
=

cmax · fmax · c
µmax · f · c− λ · cmax · fmax

(2)

Respectively, the average queuing delay W is:

W =
ρc

µc(f )−λc
=

λ · c2max · f
2
max

µmax · f · (µmax · f · c−λ · fmax · cmax)
(3)

The packets loss probability is:

Ploss =
∞∑
k=N

ρkC (1− ρc) (4)

Based on equation 2, Figure 5 plots the total delay T as
a function of frequency f and number of cores c. We set
fmax = 2.5 GHz, cmax = 12 cores, λ = 75, 000 packets per
second, andµmax = 500, 000 packets per second.We see that
the total delay approximates the behavior of detection latency:
when using 4 cores to process 75,000 packets per second,
the delay increases exponentially as we decrease frequency.
When using more cores, we see a linear increase on packet’s
total delay.

Our results in section III-B indicate that we have the lower
power consumption when ρc ≈ 1. Figure 6 shows the total
delay T and queuing delay W as a function of utilization ρ.
We keep µmax = 500, 000 packets per second and we vary

FIGURE 5. The total delay approximates the behavior of
detection latency. When using 4 cores to process 75,000
packets per second the delay increases exponentially as we
decrease frequency.

FIGURE 6. The queuing delay significantly increases with high
utilization. We see that when utilization exceeds 80%, the
queuing delay approaches the total delay and they both
increase significantly.

λ from 50, 000 till 500, 000, which results in system utiliza-
tion from 10% to 100% respectively. We use c = 12 and
f = 2.5 GHz in equations 2 and 3. We see that when utiliza-
tion is increased above 80%, the queuing delay approaches
the total delay and both increase significantly. It is clear that
under high system utilization, the queuing delay becomes
the main reason for the increased total delay, as we also
observe in section IV-B. To achieve a total delay lower than
0.1mswe need to sustain a system utilization lower than 75%.
If we want to reduce the total delay even more, e.g., less
than 50 µs in this case, the utilization should be kept lower
than 50%. However, this system underutilization reduces its
energy-efficiency.

V. SOLVING THE ENERGY-LATENCY TRADEOFF
We now explain our approach to resolve the energy-latency
tradeoff in NIDS.
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A. IDENTIFY THE MOST IMPORTANT PACKETS
FOR DETECTION LATENCY
One way to address the energy-latency tradeoff in NIDS
would be to keep the utilization of active cores within a
specific range, so to keep power consumption and detection
latency lower than the respective thresholds. However, in
this way a NIDS cannot achieve the lowest possible power
consumption, while detection latency may also be much
higher. To efficiently resolve the tradeoff, we use domain-
specific knowledge about NIDS: we capitalize on the fact
that not all packets have the same probability to carry an
attack. By identifying the most interesting packets, a NIDS
is able to process them with higher priority to achieve fast
detection, while efficiently reducing the power consumption
at each traffic load at the same time.

A key abstraction we use to identify the most important
packets for attack detection is the network flow: a flow
is defined as the set of packets belonging to the same
one-way connection, i.e., packets with same protocol, source
and destination IP addresses and port numbers (5-tuple).
Previous works have shown that most attacks are found
among the first few bytes of each flow [17]–[19]. This is
because many types of threats like port scanning, service
probes and OS fingerprinting, code-injection attacks, and
brute force login attempts, require a new connection for each
attempt, and the attack vector is found in the first few bytes
of the flow. In contrast, very large streams usually corre-
spond to file transfers, VoIP communication, or streaming
media applications, which typically are not related to security
threats. Due to the heavy-tailed flow size distribution in the
Internet [20], the first bytes of each flow correspond to a
very small percentage of the total traffic. Thus, processing
the respective packets with higher priority will result in faster
detection for most attacks.

To validate and analyze our choice for high-priority packets
in a NIDS, we measure the position of each attack within
its flow, for attacks detected while running Snort with our
anonymized trace. As we explained in Section III-A, we
injected 233 real attacks into the trace (labeled attacks), while
the background traffic contains 1851 more attacks. Most
of these attacks are related to popular threats and protocol
violations. Table 3 presents a classification of these attacks
based on Snort’s ruleset [11].

Figure 7 shows the CDF of the detected attacks’ position
within their flows. We see that 50% of the attacks are found

TABLE 3. Classification of the attacks detected in our trace.

FIGURE 7. Most attacks are detected within the first few KBs of a
flow, which is a small fraction of the total traffic. CDF of attack’s
position at each flow and the respective fraction of traffic.

within the first 2 KB of a flow, while 90% of the attacks are
detected in the first 30 KB of their flows. Only 2% of the
attacks are found beyond the first 200 KB. We observed that
the labeled attacks, which we consider more important as they
correspond to real attacks and have been validated as true
positives, are always detected within the first 5 KB of their
flows. We found that the small percentage of attacks detected
beyond 100KB of a flow correspond to less significant threats
and are usually triggered by threshold-based rules. Thus,
the first few bytes of each flow are more important for the
detection latency, since they have a much higher probability
to actually contain an attack. We can separate the respective
packets by applying a cutoff value to the flow size. Then we
classify as high priority the packets until this cutoff. and as
low priority the rest packets.
Figure 7 also presents the CDF of the fraction of traffic

that is located in a flow before the corresponding position on
the x-axis. This fraction is the percentage of high-priority
traffic as a function of the cutoff applied. For instance, 10% of
the total traffic is found in the first 500 KB of the flows. This
means that a cutoff value of 500KBper flowwill classify 10%
of the total traffic as high-priority, and 99% of the attacks can
be detected on this high-priority traffic.

B. TOLERATING EVASION ATTEMPTS
An attacker could try to exploit the flow cutoff mechanism
used for priority assignment in order to increase detection
latency and impede a timely reaction. Thus, we aim to
protect LEoNIDS against such attacks. One way to exploit
the cutoff mechanism would be to overburden the system
with high-priority packets, e.g., by sending a large number
of small flows. However, as we explain in the following
sections, LEoNIDS properly adapts to the traffic load by
increasing frequency and active cores so that the latency of
high-priority packets remains always low. In the worst case,
e.g., a fully utilized system only with high-priority packets,
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LEoNIDS will approach the behavior of the original system:
it may spend the maximum available power to keep latency
of high-priority packets low.

Another way for an attacker to exploit our cutoff-based
approach would be to push the attack into low-priority
packets, resulting in higher detection latency. To address this
attack, we take a number of countermeasures. We define
flow cutoff in bytes, not in packets, so an attacker cannot
exceed it by sending small packets. Also, the flow size we
track should correspond to the actual size of each connection,
excluding, for example, TCP retransmissions or overlapping
TCP sequence numbers, which could otherwise be used to
evade our technique and impose a lower priority. To handle
persistent connections, like HTTP keep-alive connections, we
reset flow size to zero for each new request or response.
Instead of detecting each new HTTP request using DPI and
HTTP protocol parsing, which is a costly operation, we use
an optimization based on following TCP sequence numbers
on each direction to detect a new HTTP request when we see
a change in the data transfer direction, as described in [18].
Finally, we use a lower limit for the flow cutoff value. This
is because most protocol implementations have a maximum
protocol message (request/response) and headers size, and
may close connections exceeding the size. Thus, putting the
attack beyond this size is not always possible.

For instance, many of the attacks in our trace are detected
at the HTTP protocol, usually based on a signature matching
in URI or request headers. Although attackers can send an
arbitrary large URI to exceed cutoff, e.g., by adding KBs of
space characters before URI, allWeb servers have amaximum
URI size configuration option.When aURI exceeds this limit,
an HTTP/1.1 414 Request-URI Too Large error is returned,
and request is not processed. Hence, the actual attack cannot
succeed. Similarly, when the maximum request size limit is
exceeded, servers respond with HTTP/1.1 400 Bad Request
(Header Field Too Long).

In most Web servers, the default maximum URI size is
8 KB. Thus, using a cutoff larger than 8 KB ensures the timely
detection of all successful attacks against servers using this
limit. To find out how many of the popular Web servers use
this default limit, we sent a request with URI slightly larger
than 8 KB to the top-100 Web sites based on the ranking of
alexa.com. The 98 of them responded with an error, while
only two of them accepted the request.When sending requests
with 100 KB long URI, all the top-100 Web sites responded
with error. Similarly, other protocols (e.g., IMAP, SMTP,
NetBIOS) have also a maximum message size. Even if it is
equal to fewMBs, the fraction of high-priority traffic remains
low. Another reason for setting a lower limit for cutoff value is
that 49% of the Snort rules use the depth keyword: these rules
require a pattern to be detected in a specific distance from the
beginning of a packet or flow.

We propose two alternative techniques to ensure low
latency for the high-priority packets when the system enters
into a power saving mode and active cores’ utilization
increases: time sharing and space sharing.

C. TIME SHARING
Time sharing uses a typical priority queue scheduling to
favor the high-priority packets. It first classifies packets into
flows and then uses a flow cutoff to assign them a low or
high priority. Then, packets are stored into the respective
priority queue. When a new packet is scheduled for process-
ing, the NIDS choose the next packet from the high-priority
queue. If this queue is empty, a low-priority packet is chosen.
However, this priority queue scheduling is non preemptive:
when a high-priority packet arrives and a low-priority packet
is being processed, the NIDS cannot evict the low-priority
to serve immediately the high-priority packet. Time sharing
follows the same strategy described at section III-C to adapt
frequency and number of cores.
We expect a much lower latency for high-priority packets

and a higher latency for the lower priority packets. With a
careful cutoff selection, the majority of the attacks will be
detected faster on high-priority packets. However, an attack
detection on a lower priority packet will be significantly
delayed.

D. SPACE SHARING
In time sharing, the cores of the energy-efficient NIDS remain
almost fully utilized. This may cause reduced performance
due to the non-preemptive priority queue scheduling. In space
sharing, we use separate cores for each priority. We aim to
keep cores that serve high-priority packets less utilized, to
ensure low latency. In contrast, cores serving low-priority
packets can remain highly utilized to allow for reduced power
consumption. The increased latency for low-priority packets
is less likely to affect the overall detection latency. As the
majority of the packets have low priority (see Figure 7), most
cores can be used to serve low-priority packets with high
utilization to achieve energy savings.
In order to further reduce the detection latency, we would

like to increase the frequency of the dedicated cores used
to serve high-priority packets. However, the single per chip
regulator in our Intel processors limits significantly our ability
to change the frequency of high priority cores independently
of low priority cores. Fortunately, our analysis in section IV
shows that core utilization is the main factor of an increased
detection latency. Thus, just reducing the utilization could be
enough to achieve our low latency goal even with a lower
frequency, which is necessary for low priority cores to reduce
their power consumption.
Space sharing is based on two main ideas: flow migration

and adaptive core management.

1) FLOW MIGRATION
The flow migration technique, assisted by advanced features
of modern NICs, is used to distribute efficiently the packets
into cores based on their priority. Initially, all packets arrive
at the high-priority cores. Then, packets are classified into
flows. When a flow size exceeds the specified cutoff value,
the flow is moved into a low-priority core by instructing the

8 VOLUME XXX, NO. XXX, XXXX 2014



Tsikoudis et al.: Low-Latency and Energy-Efficient NIDS

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

NIC to schedule all the successive packets of this flow into
this core. Thus, only the high-priority packets remain for
processing into the high-priority cores.

2) ADAPTIVE CORE MANAGEMENT
Space sharing dynamically partitions the active cores into
high-priority and low-priority cores, based on the workload.
It uses the optimum number of high-priority cores that
keep their utilization within a desirable range. Using more
cores than necessary may increase power consumption, while
fewer cores may increase the detection latency. Therefore,
we propose the following adaptive core management
algorithm, which extends the core/frequency adaptive
algorithm we presented in Section III-C:

1. It starts with one high-priority and one low-priority core
at the minimum frequency.

2. It continuously monitors the queues’ usage.
2.1. If high-priority queues are filled by more than a

high-priority up threshold:
2.1.1. If exist inactive cores, activate a high-priority

core.
2.1.2. Else increase the frequency.
2.1.3. If maximum frequency is used, reduce flow

cutoff.
2.2. If high-priority queues are filled by less than a

high-priority down threshold:
2.2.3. Increase cutoff up to a certain limit.
2.2.1. Else reduce the frequency.
2.2.2. If lowest frequency, deactivate a high-priority

core.
2.3. If low-priority queues are filled by more than a

low-priority up threshold:
2.3.1. If exist inactive cores, activate a low-priority

core.
2.3.2. Else increase the frequency.

2.4. If low-priority queues are filled by less than a low-
priority down threshold:

2.4.1. Reduce the frequency.
2.4.2. If lowest frequency, deactivate a low-priority

core.
Because of the limitation of our single per chip regulator,

we set the maximum frequency required by low-priority and
high-priority cores. The high-priority up threshold ensures
a low utilization for high-priority packets. The low-priority
up threshold ensures that no packet will be lost. We can also
control the load of high- and low-priority cores by changing
the cutoff value, which divides the traffic into high- and
low-priority packets. However, the cutoff always remains
within a certain range.

E. DELAY ANALYSIS WITH PRIORITIES
We extend our analysis in Section IV-C for time sharing and
space sharing. The high-priority packets arrive with rate λH ,
and low-priority packets with rate λL so that λH + λL = λ.

The λH increases with the cutoff value based on the fraction
of high-priority packets FH given in Figure 7: λH = λ · FH .
The service rate of each core at frequency f is µc(f ).

1) TIME SHARING
The high- and low-priority packets arrive at each core with
rate λcH = λH/c and λcL = λL/c respectively, where
c the active cores. Time sharing can be modeled as a
non-preemptive priority scheduling using two priority
queues. The total delay of a high-priority packet TH and of
a low-priority packet TL is:

TH =WH+
1

µc(f )
=

ρc

µc(f ) · (1−ρcH )

TL =WL+
1

µc(f )
=

ρc

µc(f ) · (1−ρcH ) · (1−ρcH−ρcL)
(5)

where ρc = λc/µc(f ), ρcH = λcH/µc(f ), ρcL = λcL/µc(f ).

2) SPACE SHARING
The high-priority packets arrive at high-priority cores with
rate λcH = λH/cH , where cH the number of high-priority
cores, and low-priority packets with rate λcL = λL/cL , where
cL the number of low-priority cores. In space sharing, each
core can be modeled as a M/M/1 queue with finite queue size
of N packets. Thus, the total delay of a high-priority packet
TH and of a low-priority packet TL are:

TH =
1

µc(f )− λcH
TL =

1
µc(f )− λcL

(6)

The detection latency D in both time and space sharing is:

D = TH · PH + TL · (1− PH ) (7)

where PH the probability that an attack exists in a
high-priority packet. This probability is given in Figure 7.

VI. IMPLEMENTATION
Based on the two alternative approaches we implemented
LEoNIDS: a NIDS architecture that offers both low power
consumption, proportionally to the load, and low detection
latency. Figure 8 illustrates the architecture of LEoNIDS with
time sharing and space sharing. Our implementation utilizes
advanced features of modern NICs, and it is based on a
specialized kernel module that modifies the packet capturing
subsystem.Moreover, it includes a modified user-level packet
capturing library and slight modifications to Snort NIDS [8].
We implemented the online frequency adaptation and core

management algorithm within the packet capture subsystem
as a Linux kernel loadable module. The module runs as a
protocol handler and processes all captured packets. It is
also responsible to store packets in the proper queues and
impose a scheduling or load balancing policy. The pack-
ets are distributed among the available cores either with
the RSS hash-based load balancing scheme [13] or with
a dynamic load balancing scheme using the flow director
filters (FDIR), which are used to define the core that will serve
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FIGURE 8. The LEoNIDS architecture with time sharing and space sharing. (a) LEoNIDS with time sharing. (b) LEoNIDS with space sharing.

each flow. We deliver packets at user-level through memory
mapped buffers, and we built a libpcap [21] wrapper library.
Then, we link Snort with this library, instead of the original
libpcap.

3) TIME SHARING
In time sharing we extend the ring buffers of the packet
capturing system using a typical priority queue scheme. The
incoming packets are classified into flows and are assigned
a low or high priority. Based on its priority, each packet is
stored in the proper queue. The modified user level library
reads the next packet from the high priority queue, and only
if it is empty, from the low priority queue. This packet is then
delivered to Snort for processing.

4) SPACE SHARING
In space sharing we use dedicated cores to process the high-
priority packets with reduced latency. We aim to keep the
utilization of these cores between 30%–50%, which results
in low queuing delays as we see in Sections IV and IV-C.
Based on the queue utilization we properly adapt flow cutoff,
number of high-priority cores, and frequency. The RSS uses
a redirection table to distribute the incoming packets to the
available cores. To implement space sharing, we first modify
the redirection table so that RSS splits all packets only to high-
priority cores. Then, these cores classify packets into flows.
When a flow exceeds the cutoff size, an FDIRfilter is added to
move the processing of this flow to a low-priority core. Along
with the incoming packets, the flow context is also migrated
to the low-priority core. This is important because (i) the new
core need to be informed that there is an already established
connection for the respective incoming packets, and (ii) in

order to handle cases where an attack spans between both
high- and low-priority packets.
Each flow that exceeds the cutoff value moves from one

core to another only once. Using the FDIR filters for flow
migration is highly efficient and improves cache perfor-
mance, as each core accesses only its local data. We keep a
list with all filters that are installed at the NIC, so when a flow
expires (either explicitly by a TCP RST/FIN packet, or by an
inactivity timeout) the respective FDIR filter is removed by
the NIC. The intel 82599 NIC [14] offers up to 8K perfect
match and 32K signature-based FDIR filters. In case all filters
are used, space sharing evicts the oldest filter to accommodate
a new flow.

VII. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate our proposed
approaches. We first compare time and space sharing while
exploring the optimal cutoff values, and then we compare all
approaches using real traffic.

A. COMPARING TIME AND SPACE SHARING
1) FINDING THE OPTIMAL CUTOFF
Using a small cutoff reduces the percentage of high-priority
packets, and thus their queue utilization and queuing delays.
However, the probability that an attack will be found in
low-priority packets, which experience a higher delay,
increases. To find out the optimal cutoff for time shar-
ing and space sharing, we vary the cutoff values from
50 KB to 150 MB per flow while sending constant traffic
at 1.0 Gbit/sec. Figure 9 shows that the optimal cutoff for
both approaches is close to 500 KB. Using this cutoff,
99% of the attacks reside into the high-priority packets.
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FIGURE 9. The optimal cutoff for time sharing and space sharing.
Detection latency as a function of cutoff. In both time sharing
and space sharing we see the lowest detection latency for
500 KB per flow.

For lower cutoff values, more attacks are found in low-priority
packets with increased detection latency, while higher cutoff
values increase the queuing delay of high-priority packets.
We also see that space sharing achieves lower detection
latency for all cutoff values below 20 MB, up to 50% lower
for 50 KB cutoff and 35% lower for the optimal cutoff of
500 KB per flow.

2) THE EFFECT OF PRIORITY ON LATENCY
To better understand the detection latency we observed, we
explore how the packet’s latency (queuing plus processing
time) changes for each priority with different cutoff values.
Figure 10 shows the latency of high- and low-priority packets
for time and space sharing as a function of cutoff when
sending at 1.0 Gbit/sec. In time sharing, we see that low-
priority packets experience up to 49.3 times higher latency
than high-priority packets. As cutoff increases, we see a slight
increase on the latency of high-priority packets due to the
larger number of packets arriving at high-priority queues.
Contrary, the latency of low-priority packets significantly
decreases until cutoff reaches 750 KB, because the fraction
of low-priority packets decreases, resulting in much less
utilization in low-priority queues. When cutoff increases
above 750 KB, the latency of low-priority packets increases
fast. This is because they wait for an increasing number of
high-priority packets to be processed.

In space sharing, we see a much lower difference between
the latency of low- and high-priority packets. Note that
both low- and high-priority packets experience lower latency
compared to time sharing. Especially the latency of
low-priority packets is significantly lower and clearly
decreases as cutoff increases. This is because low- and high-
priority packets are processed in parallel in different cores,
and the fraction of low-priority packets decrease with higher
cutoff values. The latency of high-priority packets is also
reduced, as space sharing is able to keep high-priority cores
less utilized. As the fraction of high-priority packets increase
with cutoff, we see a slight increase on their latency for higher

FIGURE 10. Low-priority packets in time sharing experience a
much higher latency that high-priority packets. Latency of high-
and low-priority packets for time sharing and space sharing as a
function of cutoff when sending at 1.0 Gbit/sec. We see that
both high-priority and (especially) low-priority packets
experience lower latency in space sharing comparing with time
sharing. (a) Time sharing. (b) Space sharing.

cutoff values. The increased latency in high-priority packets
for very small cutoff values is due to the overhead of the very
often FDIR establishments.

B. COMPARING ALL APPROACHES
1) VARYING THE LOAD
We now compare all approaches, i.e., (i) the original
Snort, (ii) the straight-forward power-proportional NIDS we
described in section III, (iii) LEoNIDS with time sharing, and
(iv) LEoNIDS with space sharing, in terms of both detection
latency and energy efficiency when varying the traffic load.
In time sharing we use a 500 KB cutoff, which was found
to perform better. In space sharing we use an adaptive cutoff
that ranges from 300 KB to 1 MB, i.e., close to the optimal
values. We have validated that all approaches detect the same
set of attacks, i.e., they have the same detection accuracy.
Figure 11 shows the power consumption and detection latency
of all approaches as a function of traffic rate. We see that
LEoNIDS with both approaches consumes approximately the
same power as the power-proportional NIDS, significantly
lower than the consumption of the original Snort. Despite the
lower consumption, LEoNIDS achieves a significantly lower
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FIGURE 11. Space sharing offers the best power-latency ratio.
Power consumption and detection latency of all approaches as
a function of traffic rate. We see that LEoNIDS with space
sharing consumes the same power with other
power-proportional approaches, but with significantly lower
detection latency.

detection latency than the power-proportional NIDS, close to
the latency of the original system.

Space sharing performs quite better than time sharing:
although both consume approximately the same power, space
sharing achieves more than 40% lower detection latency. This
is due to the non-preemptive priority queues used in time
sharing: a high-priority packet may wait for a low-priority
packet that is being processed. Moreover, the overall utiliza-
tion of active cores in time sharing remain very high, so it
cannot efficiently reduce the queuing delays of high-priority
packets. Overall, LEoNIDS with space sharing consumes
22% less power than the original system and it is able to detect
attacks with an order of magnitude lower latency than the
straight-forward power-proportional NIDS. Moreover, space
sharing achieves a lower detection latency than the original
system for rates higher than 2.5 Gbit/sec. This is due to the
higher priority given at the beginning of each flow. As the
original system does not give priority to these packets, it expe-
riences higher detection latency at high traffic rates where all
approaches result in an almost fully utilized system.

2) REALISTIC TRAFFIC VARIATIONS
In our next experiment we compare all approaches in a
realistic scenario of traffic variations. We replayed our
one-hour long trace at its original rate using a 30x multiplier,
resulting in an 120-seconds long experiment. Figure 12 shows
the traffic rate, power consumption, and detection latency of
all approaches over time. We see that again LEoNIDS with
space sharing achieves the lowest detection latency among the
other power-proportional approaches.

3) ACTIVE RESPONSE
In our last experiment we examine how the detection latency
of each approach affects the effectiveness of a NIDS reaction

FIGURE 12. Space sharing performs better under realistic traffic
variations. Traffic rate, power consumption, and detection
latency over time.

to actively terminate offending TCP connections. We con-
figured Snort with flexresp2 plugin for active response, and
we added a rule to match a specific string and respond with
reset to both source and destination hosts of the matched
flow. While sending background traffic at 1.0 Gbit/sec, we
were also sending connections with packets matching this
string. We sent a constant number of packets per connection,
while varying its duration. Figure 13 shows the percentage of
successfully closed connections by active response when
sending 100 such connections, as a function of connection’s
duration.We see that the straight-forward power-proportional
NIDS cannot respond in time and close connections shorter
than 6 ms with more than 50% probability. Contrary,
LEoNIDS is able to terminate most connections lasting more
than 3 ms, similar to the original Snort.

FIGURE 13. LEoNIDS close most offending connections longer
than 3 ms. Percentage of closed connections as a function of
connection’s duration.
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VIII. RELATED WORK
Recent works show a growing emphasis on improving
the energy efficiency in a variety of areas, like data
centers [1], [22], high performance computing [2], net-
works [4], [23] and mobile devices [3]. Gupta and Singh [4]
suggest to put components of network devices into sleep
states and propose protocol modifications to save energy.
Closer to our work, Niccolini et al. [24] present an
approach for a power-proportional software router using
DVFS and C-states. Iqbal and John [25] propose a predictive
power management scheme to pro-actively change the
frequency and number of active cores in network processors.
Nedevschi et al. [23] also use sleep states and rate adaption
to save energy. We follow a similar approach to the above
works regarding the power management. However, these
works do not consider the impact of reduced energy on
systems’ latency. In contrast, our work is mostly focused
on resolving the energy-latency tradeoff for energy-efficient
intrusion detection systems.

Kuang and Bhuyan [26] propose a scheduling algorithm
to optimize throughput and latency given a power budget
for network packet processing on multi-core processors.
The energy-latency tradeoff has been studied in the area of
wireless sensor networks [27], [28]. These works design com-
munications protocols that minimize the power consumption
of sensor nodes while satisfying latency constraints. To the
best of our knowledge, our work is the first effort to study
and resolve the energy-latency tradeoff in the area of network
monitoring and intrusion detection systems.

Pesterev et al. [29] utilize FDIR filters to improve
connection locality in multi-core systems, similarly to our
flow migration technique we use in space sharing. Another
related approach by Afek et al. [30] uses dedicated cores
to defend against algorithmic complexity attacks in intrusion
detection systems.

IX. CONCLUSIONS
In this work we studied the problem of improving the
energy efficiency of NIDS using common powermanagement
capabilities like DVFS and C-states. First, we identified
an energy-latency tradeoff: the reduced power consumption
results in a significant increase of the detection latency, which
impedes a timely reaction of NIDS to incoming attacks.
We showed that the main reason of this increase is the
high queuing delays imposed by high core utilization. Then,
we presented the design, implementation, and evaluation of
LEoNIDS: a NIDS that resolves the energy-latency tradeoff.
They key idea of LEoNIDS is to process with higher
priority the first few bytes of each flow, which have a higher
probability to carry an attack, to achieve lower latency for
them and faster attack detection. We proposed two alternative
techniques: time sharing, which uses a typical priority queue
scheduling, and space sharing, which uses dedicated cores
with low utilization to process high-priority packets. Our
experimental evaluation shows that LEoNIDS performs better
with space sharing, resulting in low power consumption,

proportionally to the load, and constantly low attack detection
latency at the same time.
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